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The interaction time of Korteweg—de Vries solitons is studied by using Konno and Ito’s complex-
time-plane method [J. Phys. Soc. Jpn. 56, 987 (1987)]. We find that the behavior of the interaction
time reflects the particle-wave dual nature of the soliton. Most of this feature is explained by the
rectangular model of Aossey et al. [Phys. Rev. A 45, 2606 (1992)].

PACS number(s): 42.50.Rh

Solitons are not only a very powerful concept in the
various fields where nonlinear problems arise, but are also
a useful communicating tool due to their exchange prop-
erties, i.e., no profile changes after collisions. The further
advantage of the solitons in the communication system
is that solitons are spontaneously formed from the ini-
tial pulses during their propagation in nonlinear media.
These spontaneous formations of the solitons have been
discussed in the initial condition problem and have been
well established [1,2]. However, the soliton formation
time or the interaction time have not been discussed so
far. These times are important when the system size is
reduced. In this paper, we study the interaction time
for two colliding Korteweg—de Vries (KdV) solitons with
various amplitude differences.

We apply polar representations [3] of the soliton to de-
fine the soliton interaction time. Konno and Ito [4] have
investigated nonlinear interactions between solitons for
KdV and Boussinesq equations in terms of the behavior
of poles of the soliton solutions in the complex time plane.
Before defining the interaction time, we summarize the
complex-time-plane method.

The KdV equation we consider is given by

us + 12Uty + Ugee = 0. (1)

One soliton solution with a wave number k and a positive
constant A is derived from an auxiliary function

B(o,8) = 1+ Aekebt, (2)
Here, B = k®. Simple zeros of ¢ are placed at t,(k) =
tgr, +itr, (n=0,%1,£2,...) where
= kz+4
R, ,3 )
2n+ 1)

= (4)

with § = In A. By using the zeros the soliton solution is
expressed as

“2‘(5)22@&—-5‘@%' )

Real and imaginary parts of complex time describe a
trajectory and an amplitude of the soliton, respectively.
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In two-soliton interactions, the auxiliary function is de-
scribed by

Bz, t) =14 Aje™ + Aze™ + Age™ 2, (6)
where
n; = kjz — Bt (M
ﬂj = k?v (8)
ky — k2 \?
= (22 9
A3 (kl + kz) AlAZ, ( )

and A; and k; are positive constants. Typical two-soliton
interactions in the complex time plane are shown in Fig.
1. The zeros deviate from the noninteracting values in
both the z-tp and z-t; planes during the interaction.
The interaction center can be easily found in the inset of
Fig. 1(a) where the zeros related to transfer concentrate
to a single zero. The beginning and ending of the inter-
action can be observed in the z-t; plane [Fig. 1(b)] as
the beginning and ending of the deviation from the non-
interacting values (2n+1)7/B(n=integer). Therefore, we
can get the interaction length as the interval of these de-
viations in the z-t; plane and then define the interaction
time via the z-tg relation by using this length.

Now let us consider the physical picture of this defini-
tion. Soliton amplitude changes during the interaction.
As we mentioned above, the imaginary part of complex
time describes an amplitude of the soliton. We use this
property of the soliton in the interacting regions. Of
course, one can directly calculate the interaction time by
using the changes of the soliton amplitude in real space.
The advantage of Konno and Ito’s technique is that it
gives greater sensitivity than this direct one because the
amplitudes are divided into many branches in the z-tr
plane and the changes due to the interaction appear in
the branches with tr(ki) ~ t;(k2). Then we can easily
extract the most sensitive branch of the interaction from
the branches.

Figure 2 shows dependence of the interaction time, de-
termined by this definition, on a (= ki/k2). As « in-
creases, the interaction time first decreases and reaches a
minimum at o« = v/3, and then increases. These behav-
iors reflect the dual nature of the soliton. The decreasing
part of the interaction time mainly comes from the parti-
cle nature of solitons. In the particle-interaction picture,
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FIG. 1. Typical trajectories of zeros. (a) Real time vs position; (b) imaginary time vs position ({1 = /81,12 = 7/32). The

parameters are k1 = 3.0,k2 = 1.6, A1 = 1.0, A, = 1.0.
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FIG. 2. Interaction time vs ki/k2. The circles are the re-
sults of our numerical experiment and the solid line is given
by Eq. (11). The magnitude of the line is multiplied by 10 in
order to compare with our numerical results.

the interaction time generally decreases as the relative ve-
locity of the interacting particles increases. However, in
the particle picture the behavior of the interaction time
for a@ > /3, where it increases with «, appears anoma-
lous. This anomaly is related to the character of the soli-
ton as an extended object. The parameter k represents
not only an amplitude and a velocity (k2) of the soli-
ton but also the soliton width. For the KdV soliton, the
width is inversely proportional to the square root of the
velocity. This means that the spatial interaction regions
are extended as the soliton velocity decreases. There-
fore, the interaction time between solitons increases with
a due to the soliton wave nature. The minimum can be
considered as the balancing point of these two natures. It
is interesting that the a value giving the minimum inter-
action time (a = v/3) is consistent with the single peak
formation limit at the interaction center. According to
the analytical investigations of the soliton profile at the
interaction center given in Ref. [5], the results show that
a single peak is formed if o > /3, while double peaks are
formed if 1 < a < v/3. These are shown in Fig. 3.
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FIG. 3. Time evolution of two solitons from ¢t = —5 to 5 for
k]_ = 3.0,A1 = A2 = 1.0, and (a) kz =1.0 and (b) kz = 1.6.
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FIG. 4. vy — vz and Wi + W3 vs k1 /kz. (The value of k; is
fixed at 5.0; k2 varies.)

These behaviors can be explained by the simple model
of Aossey et al. [6]. They consider the solitons to be
rectangular pulses with an amplitude k? and a width 1/k.
The interaction length (L) satisfies the following relation:

L = (v1 —v2)AT > W1 + Wo, (10)

where v; and W; are the velocity and the width of jth
soliton, respectively. Since solitons exchange their po-
sitions after an overtaking collision, the term W; + W,
representing the sum of the two soliton’s width describes
the minimum interaction region. From Eq. (10), the in-
teraction time AT of solitons is given by

Wi+ W, 1 1 1
> = — 4+ ). 11
AT 2 vy — V2 kf—k% <k1+k2) ( )

From this equation, it turns out that the interaction time
is comprised of two parts. One is the relative velocity
v; — vy representing the particle nature of the soliton
and second is the term W; + W, expressing the character
of the soliton as an extended object. Figure 4 shows
the contribution of each part to AT. The decreasing
and increasing parts of AT in Fig. 2 correspond to the
terms v; — vy and Wi + W, respectively. In this way,
the main feature of Fig. 2 can be understood from Egq.
(11). However, the o value of the minimum interaction
time in this model is not in agreement with that in the
numerical experiment. This disagreement comes from
the rectangular pulse approximation.

In summary, we have studied the interaction time of
two colliding KdV solitons with various amplitude dif-
ferences by using Konno and Ito’s complex-time-plane
method. The behavior of the interaction time reflects
the dual nature, i.e., particle and wave, of the soliton.
This can be confirmed by the simple model of Aossey
et al.
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